Difference between revisions of "Graduate/Postdoc Topology and Singularities Seminar"
(→Abstracts) |
(→Fall 2021 / Spring 2022) |
||
(61 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | == Fall 2021 / Spring 2022 == | ||
+ | |||
+ | This year the seminar will continue to be on Zoom, hosted by [http://www.math.wisc.edu/~maxim/ Laurentiu Maxim] and [https://www.math.wisc.edu/~wang/ Botong Wang]. The meeting information is below. We meet on <b>Mondays, at 10am</b>. Seminar announcements will be sent to the "singularities" mailing list. To subscribe, please send an email at: '''join-singularities@lists.wisc.edu''' | ||
+ | (or, if you get an error message, just email '''maxim@math.wisc.edu'''). We plan to have all talks recorded. | ||
+ | |||
+ | The seminar is targeted at junior mathematicians with an interest in the topological study of singularities. We ask the speakers to take this fact into consideration when preparing their talks. | ||
+ | |||
+ | Topic: Topology and Singularities Seminar | ||
+ | |||
+ | Join Zoom Meeting | ||
+ | https://uwmadison.zoom.us/j/99753950856?pwd=eU9FUDNRcWpnUFd3d3dwbEhOYmloQT09 | ||
+ | |||
+ | Meeting ID: 997 5395 0856 | ||
+ | Passcode: singular | ||
+ | |||
+ | Video recordings of lectures are available at: https://uwmadison.box.com/s/i7kcnfd992qxdky2bat053l3qjjaa8s7 | ||
+ | |||
+ | {| cellpadding="5" | ||
+ | !align="left" | date | ||
+ | !align="left" | speaker | ||
+ | !align="left" | title | ||
+ | |- | ||
+ | |<b>Sept 10-11</b> | ||
+ | |[https://people.math.wisc.edu/~maxim/TIBAR60.html <p style="color:red;">TIBAR60 Conference</p>] | ||
+ | |- | ||
+ | |- | ||
+ | |Sept 20 | ||
+ | |[https://people.math.wisc.edu/~wang/ Botong Wang (UW-Madison)] | ||
+ | |[[#Botong Wang|Perverse sheaves on varieties with large fundamental group and the Singer-Hopf conjecture]] | ||
+ | |- | ||
+ | |- | ||
+ | |Sept 27 | ||
+ | |[https://www-fourier.univ-grenoble-alpes.fr/~aguilaro/ Rodolfo Aguilar Aguilar (Sofia, Bulgaria)] | ||
+ | |[[#Rodolfo Aguilar Aguilar|Arrangements, fundamental groups and homology planes]] | ||
+ | |- | ||
+ | |- | ||
+ | |October 4 | ||
+ | |[https://sites.google.com/site/yongqiangliuted/ Yongqiang Liu (USTC, China)] | ||
+ | |[[#Yongqiang Liu|$L^2$-type invariants and cohomology jump loci for smooth complex quasi-projective varieties]] | ||
+ | |- | ||
+ | |- | ||
+ | |October 25 | ||
+ | |[TBA] | ||
+ | |[[#TBA|TBA]] | ||
+ | |- | ||
+ | |- | ||
+ | |Nov 1 | ||
+ | |[https://sites.google.com/site/evaelduque Eva Elduque (Universidad Autónoma de Madrid)] | ||
+ | |[[#TBA|TBA]] | ||
+ | |- | ||
+ | |- | ||
+ | |Nov 8 | ||
+ | |[https://brain-helper.com Brian Hepler (UW-Madison)] | ||
+ | |[[#TBA|TBA]] | ||
+ | |- | ||
+ | |- | ||
+ | |Nov 15 | ||
+ | |Xiping Zhang (Tongji University, Shanghai) | ||
+ | |[[#TBA|TBA]] | ||
+ | |- | ||
+ | |- | ||
+ | |Nov 22 | ||
+ | |[TBA] | ||
+ | |[[#TBA|TBA]] | ||
+ | |- | ||
+ | |- | ||
+ | |Nov 29 | ||
+ | |[https://www.math.lsu.edu/~moises/ Moisés Herradón Cueto (LSU)] | ||
+ | |[[#TBA|TBA]] | ||
+ | |- | ||
+ | |- | ||
+ | |Dec 6 | ||
+ | |[https://www.math.uni-bonn.de/people/jacobm/ Jacob Matherne (Bonn)] | ||
+ | |[[#TBA|TBA]] | ||
+ | |- | ||
+ | |- | ||
+ | |Dec 13 | ||
+ | |[https://people.clas.ufl.edu/ldicerbo/ Luca Di Cerbo (U Florida)] | ||
+ | |[[#TBA|TBA]] | ||
+ | |- | ||
+ | |- | ||
+ | |Winter Break | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | |- | ||
+ | |January 31 | ||
+ | |[TBA] | ||
+ | |[[#TBA|TBA]] | ||
+ | |- | ||
+ | |- | ||
+ | |||
+ | |} | ||
+ | |||
+ | == Abstracts == | ||
+ | |||
+ | ===Botong Wang=== | ||
+ | |||
+ | The Singer-Hopf conjecture predicts that for a compact aspherical manifold $X$ of real dimension 2$n$, the Euler characteristic of $X$ has sign $(-1)^n$. In a joint work with Yongqiang Liu and Laurentiu Maxim, we made a stronger conjecture in the complex algebraic setting that if a smooth complex projective variety is aspherical, then all perverse sheaves on the variety has nonnegative Euler characteristics. We confirm this conjecture in a special case, when the fundamental group admits a faithful, semisimple, cohomologically rigid representation. Our approach is to construct a complex variation of Hodge structure on the variety and relate the nonnegativity of Euler characteristics with certain curvature conditions on the period domain. Joint work with Donu Arapura. | ||
+ | |||
+ | ===Rodolfo Aguilar Aguilar=== | ||
+ | |||
+ | We will show some examples of homology planes: smooth, affine complex surfaces with trivial reduced integral homology, of log-general type which have an infinite fundamental group. These could be the first examples where such infinitude is shown, they arise as partial compactifications of the complement of an arrangement of lines in the complex projective plane. | ||
+ | |||
+ | ===Yongqiang Liu=== | ||
+ | |||
+ | Let $X$ be a smooth complex quasi-projective variety with a fixed epimorphism $\nu:\pi_1(X)\to \mathbb{Z}$. In this paper, we consider the asymptotic behavior of invariants such as Betti numbers with all possible field coefficients and the order of the torsion subgroup of singular homology associated to $\nu$, known as the $L^2$-type invariants. For degree 1, we give concrete formulas to compute these limits by geometric information of $X$ when $\nu$ is orbifold effective. The proof relies on the theory of cohomology jump loci. We give a detailed study about the degree 1 cohomology jump loci of $X$ with arbitrary algebraically closed field coefficients. As an application, when $X$ is a hyperplane arrangement complement, a combinatorial upper bound is given for the number of parallel positive dimension components in degree 1 cohomology jump loci with complex coefficients. Another application is that we give a positive answer to a question posed by Denham and Suciu: for any prime number $p>1$, there exists a central hyperplane arrangement such that its Milnor fiber has non-trivial $p$-torsion in homology and $p$ does not divide the number of hyperplanes in the arrangement. Joint work with Fengling Li. | ||
== Fall 2020 / Spring 2021 == | == Fall 2020 / Spring 2021 == | ||
Line 141: | Line 248: | ||
|April 5 | |April 5 | ||
|[https://riemann.unizar.es/~jicogo/ Jose Ignacio Cogolludo (Zaragoza)] | |[https://riemann.unizar.es/~jicogo/ Jose Ignacio Cogolludo (Zaragoza)] | ||
− | |[[#Jose Ignacio Cogolludo| | + | |[[#Jose Ignacio Cogolludo|Homological invariants of even Artin kernels]] |
|- | |- | ||
|- | |- | ||
|April 12 | |April 12 | ||
− | | | + | |[https://www.math.lsu.edu/~moises/ Moisés Herradón Cueto (LSU)] |
− | |[[#| | + | |[[#Moisés Herradón Cueto|Alexander modules and Mellin transform]] |
|- | |- | ||
|- | |- | ||
|April 19 | |April 19 | ||
|[https://math.uchicago.edu/~barrett/ Owen Barrett (U Chicago)] | |[https://math.uchicago.edu/~barrett/ Owen Barrett (U Chicago)] | ||
− | |[[#Owen Barrett| | + | |[[#Owen Barrett|The derived category of the abelian category of constructible sheaves]] |
|- | |- | ||
|- | |- | ||
|April 26 | |April 26 | ||
||[https://sites.google.com/view/ruijie-yang/home Ruijie Yang (Stony Brook)] | ||[https://sites.google.com/view/ruijie-yang/home Ruijie Yang (Stony Brook)] | ||
− | |[[#Ruijie Yang| | + | |[[#Ruijie Yang|Decomposition theorem for semisimple local systems]] |
+ | |- | ||
+ | |- | ||
+ | |<b>May 10-14</b> | ||
+ | |[http://www.math.wisc.edu/~maxim/Sing21.html <p style="color:red;">Workshop: Singularities in the Midwest</p> (online edition)] | ||
|- | |- | ||
|- | |- | ||
Line 278: | Line 389: | ||
Abstract: One way to compute the cohomology of the complement of a hypersurface {f=0} is to compute the cohomology of the de Rham complex of meromorphic forms with poles of arbitrary order along f. Sitting inside this complex is the logarithmic de Rham complex, consisting of certain forms with poles of order at most one. It is a long standing question to find necessary and sufficient conditions on the hypersurface ensuring that the natural inclusion of complexes is a quasi-isomorphism, that is, that f satisfies the Logarithmic Comparison Theorem. The modern approach utilizes D-module techniques and the "best" sufficient conditions require assuming that (among other things) the singular locus of f is, morally, as large as possible. To relax this assumption, we introduce a new variant of the Logarithmic Comparison Theorem where: logarithmic derivations are replaced with a submodule closed under Lie brackets; the logarithmic de Rham complex is replaced with a new de Rham complex. I will discuss our proposed strategy for proving this Quasi-Free Logarithmic Comparison Theorem which employs curious Bernstein--Sato polynomial-type constructions. Work in progress; joint with Luis Narvaez-Macarro and Francisco Castro-Jimenez. | Abstract: One way to compute the cohomology of the complement of a hypersurface {f=0} is to compute the cohomology of the de Rham complex of meromorphic forms with poles of arbitrary order along f. Sitting inside this complex is the logarithmic de Rham complex, consisting of certain forms with poles of order at most one. It is a long standing question to find necessary and sufficient conditions on the hypersurface ensuring that the natural inclusion of complexes is a quasi-isomorphism, that is, that f satisfies the Logarithmic Comparison Theorem. The modern approach utilizes D-module techniques and the "best" sufficient conditions require assuming that (among other things) the singular locus of f is, morally, as large as possible. To relax this assumption, we introduce a new variant of the Logarithmic Comparison Theorem where: logarithmic derivations are replaced with a submodule closed under Lie brackets; the logarithmic de Rham complex is replaced with a new de Rham complex. I will discuss our proposed strategy for proving this Quasi-Free Logarithmic Comparison Theorem which employs curious Bernstein--Sato polynomial-type constructions. Work in progress; joint with Luis Narvaez-Macarro and Francisco Castro-Jimenez. | ||
− | |||
===Dominik Wrazidlo=== | ===Dominik Wrazidlo=== | ||
Line 289: | Line 399: | ||
Abstract: In this survey talk, we discuss for singular toric varieties different (equivariant) characteristic classes like Chern, Todd, L and Hirzebruch classes, with applications to (weighted) lattice points counting and Euler-MacLaurin type formulae for lattice polytopes. This is about joint work with Laurentiu Maxim. | Abstract: In this survey talk, we discuss for singular toric varieties different (equivariant) characteristic classes like Chern, Todd, L and Hirzebruch classes, with applications to (weighted) lattice points counting and Euler-MacLaurin type formulae for lattice polytopes. This is about joint work with Laurentiu Maxim. | ||
+ | |||
+ | ===Jose Ignacio Cogolludo=== | ||
+ | '''Homological invariants of even Artin kernels''' | ||
+ | |||
+ | Abstract: Even Artin groups form a special family generalizing right-angle Artin groups that are associated with even-labeled graphs. Some of their properties as groups can be described in terms of their defining graph. In this talk we will discuss different properties associated with the homology of cocyclic subgroups and other finiteness conditions. This is a joint work in progress with C. Martínez-Pérez and R. Blasco-García. | ||
+ | |||
+ | ===Moisés Herradón Cueto=== | ||
+ | '''Alexander modules and Mellin transform''' | ||
+ | |||
+ | Abstract: I will talk about the study of Alexander modules of algebraic varieties using Gabber and Loeser's Mellin transform. The main strength of this approach is that it allows the application of the full machinery of the theory of perverse sheaves, and even mixed Hodge modules. We obtain new results about the structure of Alexander modules, especially about their torsion part and, in the multivariable case, their artinian submodules. It also yields a mixed Hodge structure on the maximal artinian submodules of the Alexander modules. This is based on joint work with Eva Elduque, Christian Geske, Laurentiu Maxim and Botong Wang. | ||
+ | |||
+ | ===Owen Barrett=== | ||
+ | '''The derived category of the abelian category of constructible sheaves''' | ||
+ | |||
+ | Abstract: Nori proved in 2002 that given a complex algebraic variety <span class="math inline">\(X\)</span>, the bounded derived category of the abelian category of constructible sheaves on <span class="math inline">\(X\)</span> is equivalent to the usual triangulated category <span class="math inline">\(D(X)\)</span> of bounded constructible complexes on <span class="math inline">\(X\)</span>. He moreover showed that given any constructible sheaf <span class="math inline">\(\mathcal F\)</span> on <span class="math inline">\(\mathbb{A}^n\)</span>, there is an injection <span class="math inline">\(\mathcal F\hookrightarrow\mathcal G\)</span> with <span class="math inline">\(\mathcal G\)</span> constructible and <span class="math inline">\(H^i(\mathbb{A}^n,\mathcal G)=0\)</span> for <span class="math inline">\(i>0\)</span>. | ||
+ | <p>In this talk, I’ll discuss how to extend Nori’s theorem to the case of a variety over an algebraically closed field of positive characteristic, with Betti constructible sheaves replaced by <span class="math inline">\(\ell\)</span>-adic sheaves. This is the case <span class="math inline">\(p=0\)</span> of the general problem which asks whether the bounded derived category of <span class="math inline">\(p\)</span>-perverse sheaves is equivalent to <span class="math inline">\(D(X)\)</span>, resolved affirmatively for the middle perversity by Beilinson.</p> | ||
+ | |||
+ | ===Ruijie Yang=== | ||
+ | '''Decomposition theorem for semisimple local systems''' | ||
+ | |||
+ | Abstract: In this talk, I would like to present a new and geometric proof of Sabbah's Decomposition Theorem, which asserts that any semisimple local system remains semisimple after taking the direct image under proper algebraic maps. | ||
+ | |||
+ | Sabbah's proof is D-module-theoretic in nature and relies on his theory of polarizable twistor D-modules, which generalizes Saito's theory of polarizable Hodge modules. Instead, we combine the topological approach developed by De Cataldo-Migliorini and Simpson's theory of mixed twistor structures to give the new proof. Along the way, we obtain new results about the cohomology of semisimple local systems. Joint work with Chuanhao Wei. | ||
== Fall 2018== | == Fall 2018== |
Latest revision as of 09:56, 16 October 2021
Contents
- 1 Fall 2021 / Spring 2022
- 2 Abstracts
- 3 Fall 2020 / Spring 2021
- 4 Abstracts
- 4.1 Eva Elduque
- 4.2 Yongqiang Liu
- 4.3 Brian Hepler
- 4.4 Sebastián Olano
- 4.5 Jeremy Usatine
- 4.6 Lei Wu
- 4.7 Patricio Almirón Cuadros
- 4.8 Mihai Tibăr
- 4.9 Javier Fernandez de Bobadilla
- 4.10 Avi Steiner
- 4.11 Irma Pallarés Torres
- 4.12 Manuel González Villa
- 4.13 Feng Hao
- 4.14 Alex Suciu
- 4.15 Rares Rasdeaconu
- 4.16 Pablo Portilla Cuadrado
- 4.17 Bradley Dirks
- 4.18 Daniel Bath
- 4.19 Dominik Wrazidlo
- 4.20 Jörg Schürmann
- 4.21 Jose Ignacio Cogolludo
- 4.22 Moisés Herradón Cueto
- 4.23 Owen Barrett
- 4.24 Ruijie Yang
- 5 Fall 2018
- 6 Fall 2017
- 7 Spring 2017
- 8 Fall 2016
- 9 Spring 2016
- 10 Abstracts
- 11 Fall 2015
- 12 Abstracts
- 13 Spring 2014
- 14 Fall 2014
- 15 Spring 2014
- 16 Fall 2013
- 17 Spring 2013
- 18 Abstracts
- 19 Fall 2012
- 20 Abstracts
Fall 2021 / Spring 2022
This year the seminar will continue to be on Zoom, hosted by Laurentiu Maxim and Botong Wang. The meeting information is below. We meet on Mondays, at 10am. Seminar announcements will be sent to the "singularities" mailing list. To subscribe, please send an email at: join-singularities@lists.wisc.edu (or, if you get an error message, just email maxim@math.wisc.edu). We plan to have all talks recorded.
The seminar is targeted at junior mathematicians with an interest in the topological study of singularities. We ask the speakers to take this fact into consideration when preparing their talks.
Topic: Topology and Singularities Seminar
Join Zoom Meeting https://uwmadison.zoom.us/j/99753950856?pwd=eU9FUDNRcWpnUFd3d3dwbEhOYmloQT09
Meeting ID: 997 5395 0856 Passcode: singular
Video recordings of lectures are available at: https://uwmadison.box.com/s/i7kcnfd992qxdky2bat053l3qjjaa8s7
date | speaker | title |
---|---|---|
Sept 10-11 | TIBAR60 Conference | |
Sept 20 | Botong Wang (UW-Madison) | Perverse sheaves on varieties with large fundamental group and the Singer-Hopf conjecture |
Sept 27 | Rodolfo Aguilar Aguilar (Sofia, Bulgaria) | Arrangements, fundamental groups and homology planes |
October 4 | Yongqiang Liu (USTC, China) | $L^2$-type invariants and cohomology jump loci for smooth complex quasi-projective varieties |
October 25 | [TBA] | TBA |
Nov 1 | Eva Elduque (Universidad Autónoma de Madrid) | TBA |
Nov 8 | Brian Hepler (UW-Madison) | TBA |
Nov 15 | Xiping Zhang (Tongji University, Shanghai) | TBA |
Nov 22 | [TBA] | TBA |
Nov 29 | Moisés Herradón Cueto (LSU) | TBA |
Dec 6 | Jacob Matherne (Bonn) | TBA |
Dec 13 | Luca Di Cerbo (U Florida) | TBA |
Winter Break | ||
January 31 | [TBA] | TBA |
Abstracts
Botong Wang
The Singer-Hopf conjecture predicts that for a compact aspherical manifold $X$ of real dimension 2$n$, the Euler characteristic of $X$ has sign $(-1)^n$. In a joint work with Yongqiang Liu and Laurentiu Maxim, we made a stronger conjecture in the complex algebraic setting that if a smooth complex projective variety is aspherical, then all perverse sheaves on the variety has nonnegative Euler characteristics. We confirm this conjecture in a special case, when the fundamental group admits a faithful, semisimple, cohomologically rigid representation. Our approach is to construct a complex variation of Hodge structure on the variety and relate the nonnegativity of Euler characteristics with certain curvature conditions on the period domain. Joint work with Donu Arapura.
Rodolfo Aguilar Aguilar
We will show some examples of homology planes: smooth, affine complex surfaces with trivial reduced integral homology, of log-general type which have an infinite fundamental group. These could be the first examples where such infinitude is shown, they arise as partial compactifications of the complement of an arrangement of lines in the complex projective plane.
Yongqiang Liu
Let $X$ be a smooth complex quasi-projective variety with a fixed epimorphism $\nu:\pi_1(X)\to \mathbb{Z}$. In this paper, we consider the asymptotic behavior of invariants such as Betti numbers with all possible field coefficients and the order of the torsion subgroup of singular homology associated to $\nu$, known as the $L^2$-type invariants. For degree 1, we give concrete formulas to compute these limits by geometric information of $X$ when $\nu$ is orbifold effective. The proof relies on the theory of cohomology jump loci. We give a detailed study about the degree 1 cohomology jump loci of $X$ with arbitrary algebraically closed field coefficients. As an application, when $X$ is a hyperplane arrangement complement, a combinatorial upper bound is given for the number of parallel positive dimension components in degree 1 cohomology jump loci with complex coefficients. Another application is that we give a positive answer to a question posed by Denham and Suciu: for any prime number $p>1$, there exists a central hyperplane arrangement such that its Milnor fiber has non-trivial $p$-torsion in homology and $p$ does not divide the number of hyperplanes in the arrangement. Joint work with Fengling Li.
Fall 2020 / Spring 2021
This year the seminar is on Zoom, hosted by Laurentiu Maxim and Botong Wang. The meeting information is below. We meet on Mondays, at 10am. Seminar announcements will be sent to the "singularities" mailing list. To subscribe, please send an email at: join-singularities@lists.wisc.edu (or, if you get an error message, just email maxim@math.wisc.edu). We plan to have all talks recorded.
The seminar is targeted at junior mathematicians with an interest in the topological study of singularities. We ask the speakers to take this fact into consideration when preparing their talks.
Topic: Topology and Singularities Seminar
Join Zoom Meeting https://uwmadison.zoom.us/j/92348710211?pwd=TWlEWlE4K0RiTDVjRUhKZW9VV0p4QT09
Meeting ID: 923 4871 0211
Passcode: 752425
Video recordings of all talks can be found at the url: https://uwmadison.box.com/v/SingularitiesElduque
Abstracts
Eva Elduque
Mixed Hodge structures on Alexander modules
Abstract: Let ƒ : U → C^{∗} be an algebraic map from a smooth complex connected algebraic variety U to the punctured complex line C^{∗}. Using ƒ to pull back the exponential map C → C^{∗}, one obtains an infinite cyclic cover U^{ƒ} of the variety U. The homology groups of this infinite cyclic cover, which are endowed with Z-actions by deck transformations, determine the family of Alexander modules associated to the map ƒ. In this talk, we will discuss how to equip the torsion part of the Alexander modules (with respect to the Z-actions) with canonical mixed Hodge structures. Since U^{ƒ} is not an algebraic variety in general, these mixed Hodge structures cannot be obtained from Deligne's theory. The resulting mixed Hodge structures on Alexander modules have some desirable properties. For example, the covering space map U^{ƒ} → U induces morphisms of mixed Hodge structures in homology, where the homology of U is equipped with Deligne's mixed Hodge structure. We will explore several consequences/applications of this fact, regarding weights and semisimplicity. We will also compare the mixed Hodge structures on Alexander modules to other well studied mixed Hodge structures in the literature, including the limit mixed Hodge structure on the generic fiber of ƒ. Joint work with C. Geske, M. Herradón Cueto, L. Maxim, and B. Wang.
Yongqiang Liu
A question of Bobadilla-Kollár for the abelian variety case
Abstract: In their 2012 paper, Bobadilla and Kollár studied topological conditions which guarantee that a proper map of complex algebraic varieties is a topological or differentiable fibration. They also asked whether a certain finiteness property on the relative covering space can imply that a proper map is a fibration. In this talk, we answer positively the integral homology version of their question in the case of abelian varieties. This is based on a joint work with Laurentiu Maxim and Botong Wang (arXiv:2006.09295).
Brian Hepler
Sabbah-Mochizuki-Kedlaya's Hukuhara-Levelt-Turrittin Theorem and Deligne's Stokes Structures
Abstract: In the first of two expository talks, we will discuss the solution(s) to the Riemann-Hilbert correspondence for holonomic D-modules in dimension one, primarily motivating the construction of the target category of objects that represent "solutions to ODEs with irregular singularities." Our first prototype of a solution in the local analytic case, the Stokes-filtered local system, is due to Deligne and is based in the asymptotic theory of differential equations.
Irregular Perverse Sheaves in Dimension One
Abstract: In the second of two expository talks on the irregular Riemann-Hilbert correspondence, we describe Deligne's solution via Stokes-filtered local systems in dimension one, and more generally the Abelian category of such objects as a schematic for irregular perversity. With this intuition, we then describe the much-more general language of enhanced ind-sheaves and the solution of Kashiwara-D'Agnolo in terms of these "simpler" objects. Time permitting, we also describe the equivalent characterization of irregular perversity of Kuwagaki by way of irregularly constructible complexes of sheaves of modules over a finite Novikov ring.
Sebastián Olano
On the nonnegativity of stringy Hodge numbers
Abstract: Stringy Hodge numbers are a generalization of the usual Hodge numbers of a smooth projective variety. Batyrev introduced them to formulate the topological mirror symmetry test for singular Calabi-Yau varieties. These numbers are defined on a wider class of projective varieties with mild singularities, which are studied in birational geometry. In contrast to the usual Hodge numbers, stringy Hodge numbers are not defined via a cohomology theory. Consequently, Batyrev conjectured that they are nonnegative. This nonnegativity represents a numerical constraint on the exceptional divisor of a resolution of singularities, and thus, it is of intrinsic interest in birational geometry. In this talk, I will present positive results towards Batyrev’s conjecture.
Jeremy Usatine
Stringy invariants and toric Artin stacks
Abstract: Stringy Hodge numbers are certain generalizations, to the singular setting, of Hodge numbers. Unlike usual Hodge numbers, stringy Hodge numbers are not defined as dimensions of cohomology groups. Nonetheless, an open conjecture of Batyrev's predicts that stringy Hodge numbers are nonnegative. In the special case of varieties with only quotient singularities, Yasuda proved Batyrev's conjecture by showing that the stringy Hodge numbers are given by orbifold cohomology. For more general singularities, a similar cohomological interpretation remains elusive. I will discuss a conjectural framework, proven in the toric case, that relates stringy Hodge numbers to motivic integration for Artin stacks, and I will explain how this framework applies to the search for a cohomological interpretation for stringy Hodge numbers. This talk is based on joint work with Matthew Satriano.
Lei Wu
Constructibility of Log de Rham Complexes for Lattices of Regular Holonomic D-modules
Abstract: In the classical Hodge theory, the de Rham complex is quasi-isomorphic to the C-constant sheaf on a complex manifold X. Fixing a normal crossing divisor on X, one can construct the logarithmic (log) de Rham complex. Grothendieck comparison says that the log de Rham complex is quasi-isomorphic to the perverse sheaf given by the maximal extension of the constant sheaf on the complement of the divisor. Deligne then extended the comparison to the case for Deligne lattices associated to complex local systems on the complement of the divisor and obtained the so-called Grothendieck-Deligne comparison which leads to the construction of Riemann-Hilbert Correspondence for regular holonomic D-modules. In the log category, one can construct lattices for all regular holonomic D-modules. In this talk, I will discuss the log de Rham complexes for lattices of regular holonomic D-modules and prove their constructibility in general by using relative D-modules. If time allows, I will talk about some open questions about Riemann-Hilbert Correspondence in the log category as well as for relative D-modules.
Patricio Almirón Cuadros
Bounds for the non-quasihomogeneity degree of a hypersurface singularity in low dimension
Abstract: In his celebrated 1971 paper, K. Saito proved that a hypersurface singularity is quasi-homogeneous if and only if its Milnor, μ, and Tjurina, τ, numbers coincide. After that, one can define the non-quasihomogeneity degree of a hypersurface singularity as μ-τ. In this talk, we will focus on studying optimal bounds for the non-quasihomogeneity degree of the type Cμ, where C<1 is a rational number. Our main motivation to this topic is the following question posed by Dimca and Greuel in 2017: Is it true that for any plane curve singularity μ/τ<4/3?
In this talk I will present a complete answer to this question by using techniques of surface singularities. I will show how these techniques allow us to fit the Dimca and Greuel question as part of the general problem of finding optimal bounds for the non-quasihomogeneity degree of the previous type. As a consequence, we can link the problem of studying optimal bounds for the non-quasihomogeneity with an old standing conjecture posed by Durfee in 1978.
Mihai Tibăr
On some polar degree conjectures
Abstract: Dolgachev (2000) initiated the study of "Cremona polar transformations", introduced the invariant Pol(V) for projective hypersurfaces V, and classified the homaloidal plane curves, i.e. plane projective curves C with Pol(C)=1. I'll discuss here the proof of Dolgachev's conjecture by Dimca and Papadima (2003), their conjecture on the classification of homaloidal hypersurfaces with isolated singularities proved by Huh (2014), and Huh's conjecture on the classification of hypersurfaces with isolated singularities and Pol(V) =2, proved recently.
Javier Fernandez de Bobadilla
Moderately discontinuous algebraic topology
Abstract: I will explain an Algebraic Topology which captures metric information on the degeneration of links to singular points of subanalytic germs as the radius decreases. We have provided the foundations for homology and homotopy, and most of the usual theorems of the topological world have appropriate versions (Seifert-Van Kampen, Hurewicz comparison, relative homology, Mayer-Vietoris, metric homotopy invariance, finite generation,...) I will present the first applications of the theory. (Joint work with S. Heinze, M. Pe Pereira, E. Sampaio.)
Avi Steiner
Vanishing criteria for tautological systems
Abstract: Tautological systems are vast generalizations of A-hypergeometric systems to the case of an arbitrary reductive algebraic group. Much of the interest in such systems has come from their application to period integrals of Calabi--Yau hypersurfaces. As with A-hypergeometric systems, part of the input data is a parameter $\beta$. I will discuss joint work with P. Görlach, T. Reichelt, C. Sevenheck, and U. Walther discussing criteria which bounds the number of parameters $\beta$ which give a non-trivial tautological system.
Irma Pallarés Torres
The Brasselet-Schürmann-Yokura conjecture for rational homology manifolds
Abstract: The Brasselet-Schürmann-Yokura conjecture is a conjecture of characteristic classes of singular spaces formulated by J. P. Brasselet, J. Schürmann, and S. Yokura. The conjecture predicts the equality between the Hodge L-class and the Goresky-MacPherson L-class for compact complex algebraic varieties that are rational homology manifolds. In this talk, I will explain two proofs of the conjecture. The first, via classical Hodge theory for projective varieties. This is a joint work with J. Fernández de Bobadilla. The second, using the theory of mixed Hodge modules for general compact algebraic varieties. This is a joint work with J. Fernández de Bobadilla and M. Saito.
Manuel González Villa
On a quadratic form associated with the nilpotent part of the monodromy of a curve
Abstract: Joint work with Lilia Alanís-López, Enrique Artal Bartolo, Christian Bonatti, Xavier Gómez-Mont, and Pablo Portilla Cuadrado. We study the nilpotent part N of certain pseudo-periodic automorphisms of surfaces appearing in singularity theory. We associate a quadratic form Q defined on the first (relative to the boundary) homology group of the Milnor fiber F of any germ analytic curve on a normal surface. Using the twist formula and techniques from mapping class group theory, we prove that the form Q obtained after killing ker N is definite positive, and that its restriction to the absolute homology group of F is even whenever the Nielsen-Thurston graph of the monodromy automorphism is a tree. The form Q is computable in terms of the Nielsen-Thurston or the dual graph of the semistable reduction, as illustrated with several examples. Numerical invariants associated to Q are able to distinguish plane curve singularities with different topological types but the same spectral pairs or Seifert form. Finally, we discuss a generic linear germ defined on a superisolated surface with not smooth ambient space.
Feng Hao
Holomorphic 1-forms, smoothness of morphisms to abelian varieties and some linearity properties
Abstract: In this talk I will discuss some results on how the existence of nowhere vanishing holomorphic 1-forms on a smooth complex projective variety X affect the singularities of morphisms from X to (simple) abelian varieties. Also, I will discuss some results on the linearity of the set of holomorphic 1-forms admitting zeros, which is related to the study of singularities of Albanese map. This is a joint work with Yajnaseni Dutta and Yongqiang Liu.
Alex Suciu
Ab-exact extensions and Milnor fibrations of arrangements
Abstract: We study the lower central series, the Alexander invariants, and the cohomology jump loci of groups arising as split extensions with trivial monodromy in first homology with appropriate coefficients. We use these techniques to gain further understanding of the Milnor fibration of the complement of a hyperplane arrangement.
Rares Rasdeaconu
Moduli spaces of stable, rank 1, torsion free sheaves on real curves
Abstract: The counting of rational curves representing primitive homology classes on complex or real K3 surfaces is governed by the Yau-Zaslow formula and its real analog, respectively. A natural approach to extend such formulae to the non-primitive case requires the computation of the Euler characteristic of moduli spaces of stable, rank one sheaves on curves which are possibly reducible and non-reduced. The recent developments in this direction will be presented (joint work with V. Kharlamov).
Pablo Portilla Cuadrado
Positive factorizations of monodromies on links of isolated complex surface singularities
Abstract: We present a generalization of a classical result concerning smooth germs of surfaces, by showing that monodromies on links of isolated complex surface singularities associated with reduced holomorphic map germs are a product of right-handed Dehn twists. We explore some consequences of this theorem in the realm of mapping class groups of surfaces. If time permits, we will talk about the higher-dimensional counterpart of the result and how it possibly provides an obstruction to the smoothability of isolated singularities.
Bradley Dirks
Minimal Exponents and a conjecture of Teissier
Abstract: The minimal exponent, defined by M. Saito, is an invariant of hypersurface singularities which is a refinement of the log canonical threshold. One expects singularities to worsen when intersecting with a smooth hypersurface, and Teissier conjectured in the 80's an inequality describing how much the minimal exponent can decrease in this process. I will describe joint work with Mircea Mustaţă (building on work he has done with Eva Elduque) in which we prove this conjecture.
Daniel Bath
Towards a Logarithmic Comparison Theorem for Quasi-Free Divisors
Abstract: One way to compute the cohomology of the complement of a hypersurface {f=0} is to compute the cohomology of the de Rham complex of meromorphic forms with poles of arbitrary order along f. Sitting inside this complex is the logarithmic de Rham complex, consisting of certain forms with poles of order at most one. It is a long standing question to find necessary and sufficient conditions on the hypersurface ensuring that the natural inclusion of complexes is a quasi-isomorphism, that is, that f satisfies the Logarithmic Comparison Theorem. The modern approach utilizes D-module techniques and the "best" sufficient conditions require assuming that (among other things) the singular locus of f is, morally, as large as possible. To relax this assumption, we introduce a new variant of the Logarithmic Comparison Theorem where: logarithmic derivations are replaced with a submodule closed under Lie brackets; the logarithmic de Rham complex is replaced with a new de Rham complex. I will discuss our proposed strategy for proving this Quasi-Free Logarithmic Comparison Theorem which employs curious Bernstein--Sato polynomial-type constructions. Work in progress; joint with Luis Narvaez-Macarro and Francisco Castro-Jimenez.
Dominik Wrazidlo
Intersection spaces and Poincaré completion
Abstract: In this survey talk, I will present a two-step method that assigns rational Poincaré duality spaces to certain compact oriented pseudomanifolds by modifying only a neighborhood of the singular set. The first step of the method consists of the intersection space construction, which was invented by Banagl, and was later extended by Agustín and Fernández de Bobadilla to a larger class of pseudomanifolds of arbitrary stratification depth. I will explain work in progress about the study of the rational homotopy type of intersection spaces. The second step of the method is a joint work with T. Essig, in which we extend intersection spaces to rational Poincaré duality spaces in certain cases by constructing a fundamental class. We achieve such a "Poincaré completion" by attaching a finite number of cells to the intersection space, which generalizes work of Klimczak. The focus of this talk lies on a survey of main ideas, examples, and possible future directions of research.
Jörg Schürmann
(Equivariant) characteristic classes of singular toric varieties
Abstract: In this survey talk, we discuss for singular toric varieties different (equivariant) characteristic classes like Chern, Todd, L and Hirzebruch classes, with applications to (weighted) lattice points counting and Euler-MacLaurin type formulae for lattice polytopes. This is about joint work with Laurentiu Maxim.
Jose Ignacio Cogolludo
Homological invariants of even Artin kernels
Abstract: Even Artin groups form a special family generalizing right-angle Artin groups that are associated with even-labeled graphs. Some of their properties as groups can be described in terms of their defining graph. In this talk we will discuss different properties associated with the homology of cocyclic subgroups and other finiteness conditions. This is a joint work in progress with C. Martínez-Pérez and R. Blasco-García.
Moisés Herradón Cueto
Alexander modules and Mellin transform
Abstract: I will talk about the study of Alexander modules of algebraic varieties using Gabber and Loeser's Mellin transform. The main strength of this approach is that it allows the application of the full machinery of the theory of perverse sheaves, and even mixed Hodge modules. We obtain new results about the structure of Alexander modules, especially about their torsion part and, in the multivariable case, their artinian submodules. It also yields a mixed Hodge structure on the maximal artinian submodules of the Alexander modules. This is based on joint work with Eva Elduque, Christian Geske, Laurentiu Maxim and Botong Wang.
Owen Barrett
The derived category of the abelian category of constructible sheaves
Abstract: Nori proved in 2002 that given a complex algebraic variety \(X\), the bounded derived category of the abelian category of constructible sheaves on \(X\) is equivalent to the usual triangulated category \(D(X)\) of bounded constructible complexes on \(X\). He moreover showed that given any constructible sheaf \(\mathcal F\) on \(\mathbb{A}^n\), there is an injection \(\mathcal F\hookrightarrow\mathcal G\) with \(\mathcal G\) constructible and \(H^i(\mathbb{A}^n,\mathcal G)=0\) for \(i>0\).
In this talk, I’ll discuss how to extend Nori’s theorem to the case of a variety over an algebraically closed field of positive characteristic, with Betti constructible sheaves replaced by \(\ell\)-adic sheaves. This is the case \(p=0\) of the general problem which asks whether the bounded derived category of \(p\)-perverse sheaves is equivalent to \(D(X)\), resolved affirmatively for the middle perversity by Beilinson.
Ruijie Yang
Decomposition theorem for semisimple local systems
Abstract: In this talk, I would like to present a new and geometric proof of Sabbah's Decomposition Theorem, which asserts that any semisimple local system remains semisimple after taking the direct image under proper algebraic maps.
Sabbah's proof is D-module-theoretic in nature and relies on his theory of polarizable twistor D-modules, which generalizes Saito's theory of polarizable Hodge modules. Instead, we combine the topological approach developed by De Cataldo-Migliorini and Simpson's theory of mixed twistor structures to give the new proof. Along the way, we obtain new results about the cohomology of semisimple local systems. Joint work with Chuanhao Wei.
Fall 2018
The Seminar meets at 10.30 to 11:30 on Fridays in Van Vleck 901.
date | speaker | title |
---|---|---|
Oct 5 | Fenglin Li | "Hasse principle and u-invariant" |
Oct 26 | Fenglin Li | "Hasse principle and u-invariant (II)" |
Nov 2 | José Rodríguez | "Maximum likelihood degree" |
Abstracts
Nov 2: José Rodríguez
Maximum likelihood degree
In statistics, point estimation uses sample data to calculate the "best estimate" of an unknown population parameter. For example, the sample average can be used to estimate the population mean. While there are many different point estimators, some of the most common ones are the maximum likelihood estimator (MLE), method of moments, and generalized method of moments (GMM).
In algebraic statistics statistical models are studied through the lens of algebra, geometry, and combinatorics. From model selection to inference, this interdisciplinary field has seen applications in a wide range of statistical procedures. In this talk, I will review maximum likelihood estimation and the maximum likelihood degree (ML degree) for discrete models. In particular, I will discuss how the ML degree gives a measure of algebraic complexity of the point estimate for MLE and how we can compute it using tools from topology and geometry. If time permits I will also discuss how we can use maximum likelihood degrees to study singularities.
Fall 2017
The Seminar meets at 3:30 to 4:30 pm on Wednesdays in Van Vleck 901.
date | speaker | title |
---|---|---|
Oct 4 | Eva Elduque | "Twisted Alexander Modules of Complex Essential Hyperplane Arrangement Complements (I)" |
Oct 11 | Eva Elduque | "Twisted Alexander Modules of Complex Essential Hyperplane Arrangement Complements (II)" |
Oct 18 | Sebastian Baader | "Dehn twist length in mapping class groups" |
Oct 25 | Cancelled | |
Nov 1 | Christian Geske | "Algebraic Intersection Spaces (I)" |
Nov 8 | Christian Geske | "Algebraic Intersection Spaces (II)" |
Nov 15 | Laurentiu Maxim | "Stratified Morse Theory: an overview (I)" |
Nov 22 | Thanksgiving break | |
Nov 29 | Laurentiu Maxim | "Stratified Morse Theory: an overview (II)" |
December 6 | Alexandra Kjuchukova | "Singular branched covers of four-manifolds and applications" |
December 13 | TBD | "TBA" |
Spring 2017
Fridays at 11:00 VV901
The Seminar meets on Fridays at 11:00 pm in Van Vleck 901, and is coordinated by Alexandra Kjuchukova, Manuel Gonzalez Villa and Botong Wang.
date | speaker | title |
---|---|---|
Jan 27 | Christian Geske | "Intersection Spaces and Equivariant Moore Approximation I" |
Feb 3 | Christian Geske | "Intersection Spaces and Equivariant Moore Approximation II" |
Feb 10 | Sashka | "The Wirtinger Number of a knot equals its bridge number I" |
Feb 17 | Sashka | "The Wirtinger Number of a knot equals its bridge number II" |
Feb 24 | Christian Geske | "Intersection Spaces and Equivariant Moore Approximation III" |
Mar 3 | Manuel Gonzalez Villa | "Multiplier ideals of irreducible plane curve singularities" |
Fall 2016
Wednesdays at 14:30 VV901
The Seminar meets on Wednesdays at 14:30 pm in Van Vleck 901 (except on October 26th when we will meet in Van Vleck 903), and is coordinated by Alexandra Kjuchukova, Manuel Gonzalez Villa and Botong Wang.
date | speaker | title |
---|---|---|
Sept. 14 (W) | Laurentiu Maxim | "Alexander-type invariants of hypersurface complements" |
Sept. 21 (W) | Botong Wang | "Cohomology jump loci" |
Sept. 28 (W) | Alexandra Kjuchukova | "On the Bridge Number vs Meridional Rank Conjecture" |
Oct 5 (W) | Manuel Gonzalez Villa | "Introduction to Newton polyhedra" |
Oct 12 (W) | Manuel Gonzalez Villa | "More on Newton polyhedra" |
Oct 26 (W) | Christian Geske | "Intersection Spaces" |
Nov 2 (W) | Christian Geske | "Intersection Spaces Continued" |
Nov 9 (W) | CANCELLED | |
Nov 16 (W) | Eva Elduque | "Braids and the fundamental group of plane curve complements" |
Nov 30 (W) | Laurentiu Maxim | "Novikov homology of hypersurface complements" |
Dec 7 (W) | CANCELLED | |
Dec 14 (W) | Eva Elduque | Specialty Exam: "Twisted Alexander invariants of plane curve complements" |
Spring 2016
Mondays at 3:20 B139VV
The old Graduate Singularities Seminar will meet as a Graduate/Postdoc Topology and Singularities Seminar in Fall 2015 and Spring 2016.
The seminar meets on Mondays at 3:20 pm in Van Vleck B139. During Spring 2016 we will cover first chapters the book Singularities in Topology by Alex Dimca (Universitext, Springer Verlag, 2004). If you would like to participate giving one of the talks, please contact Eva Elduque or Christian Geske.
date | speaker | title |
---|---|---|
Feb. 8 (M) | Christian Geske | Section 1.1 and 1.2: Category of complexes and Homotopical category |
Feb. 15 (M) | Eva Elduque | Sections 1.3 and 1.4: Derived category and derived functors |
Feb. 22 (M) | Botong Wang | Sections 2.1 and 2.2: Generalities on Sheaves and Derived tensor products |
Feb. 29 (M) | Christian Geske | Hypercohomology and Holomorphic Differential Forms on Analytic Varieties |
Mar. 7 (M) | Eva Elduque | Section 2.3: Direct and inverse image |
Mar. 14 (M) | Cancelled | |
Mar. 28 (M) | Cancelled | |
Apr. 4 (M) | Cancelled | |
Apr. 11 (M) | Christian Geske | Section 2.3 cont. |
Apr. 18 (M) | Cancelled | |
Apr. 25 (M) | Cancelled | |
May. 2 (M) | Cancelled |
If you would like to present a topic, please contact Eva Elduque or Christian Geske.
Abstracts
(From the back cover of Dimca's book) Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds, a great geometrical idea due to R. Thom and H. Whitney. These sheaves, generalizing the local systems that are so ubiquitous in mathematics, have powerful applications to the topology of such singular spaces (mainly algebraic and analytic complex varieties).
This introduction to the subject can be regarded as a textbook on Modern Algebraic Topology, which treats the cohomology of spaces with sheaf coefficients (as opposed to the classical constant coefficient cohomology).
The first five chapters introduce derived categories, direct and inverse images of sheaf complexes, Verdier duality, constructible and perverse sheaves, vanishing and characteristic cycles. They also discuss relations to D-modules and intersection cohomology. The final chapters apply this powerful tool to the study of the topology of singularities, of polynomial functions and of hyperplane arrangements.
Some fundamental results, for which excellent sources exist, are not proved but just stated and illustrated by examples and corollaries. In this way, the reader is guided rather quickly from the A-B-C of the theory to current research questions, supported in this by a wealth of examples and exercises.
Fall 2015
Thursdays 4pm in B139VV
date | speaker | title |
---|---|---|
Sept. 24 (Th) | KaiHo (Tommy) Wong | Twisted Alexander Invariant for Knots and Plane Curves |
Oct. 1 (Th) | Alexandra (Sashka) Kjuchukova | Linking numbers and branched covers I |
Oct. 8 (Th) | Alexandra (Sashka) Kjuchukova | Linking numbers and branched covers II |
Oct. 15 (Th) | Manuel Gonzalez Villa | On poles of zeta functions and monodromy conjecture I |
Oct. 22 (Th) | Yun Su (Suky) | Pretalk Higher-order degrees of hypersurface complements., Survey on Alexander polynomial for plane curves. |
Oct. 29 (Th) | Yun Su (Suky) | Aftertalk Higher-order degrees of hypersurface complements. |
Nov. 5 (Th) | Manuel Gonzalez Villa | On poles of zeta functions and monodromy conjecture II |
Nov. 12 (Th) | Manuel Gonzalez Villa | On poles of zeta functions and monodromy conjecture III |
Nov. 19 (Th) | Eva Elduque | Stiefel-Whitney classes |
Dec. 3 (Th) | Eva Elduque | Grass-mania! |
Dec. 10 (Th) | KaiHo (Tommy) Wong | Pretalk Milnor Fiber of Complex Hyperplane Arrangements |
Abstracts
Th, Sep 24: Tommy
Twisted Alexander Invariant of Knots and Plane Curves.
I will introduced three invariants of knots and plane curves, fundamental group, Alexander polynomial, and twisted Alexander polynomial. Some basic examples will be used to illustrate how Alexander polynomial or twisted Alexander polynomial can be computed from the fundamental group. If time permits, I will survey some known facts about twisted Alexander invariant of plane curves.
Th, Oct 1 and 8: Sashka
Linking numbers and branched coverings I and II
Let K be a knot in S^3, and let M be a non-cyclic branched cover of S^3 with branching set K. The linking numbers between the branch curves in M, when defined, are an invariant of K which can be traced back to Reidemeister and was used by Ken Perko in the 60s to distinguish 25 new knot types not detected by their Alexander Polynomials. In addition to this classical result, recent work in the study of branched covers of four-manifolds with singular branching sets leads us to consider the linking of other curves in M besides the branch curves.
In these two talks, I will outline Perko's original method for computing linking in a branched cover, and I will give a brief overview of its classical applications. Then, I'll describe a suitable generalization of his method, and explain its relevance to a couple of open questions in the classification of branched covers between four-manifolds.
Th, Oct 15, Nov 5 and Nov 12: Manuel
On poles of zeta functions and monodromy conjecture I and II
Brief introduction to topological and motivic zeta functions and their relations. Statement of the monodromy conjecture. Characterization and properties of poles of the in the case of plane curves. Open problems in the case of quasi-ordinary singularities.
Th, Nov 19: Eva
Stiefel-Whitney classes
Not all elements in the Z_2 cohomology ring of the base space of a real vector bundle are created equal. We will define the Stiefel-Whitney classes and give evidence of why they are the cool kids of the cohomology dance. For example, they will tell us information about when a manifold is the boundary of another one or when we can’t embed a given projective space into R^n.
Th, Dec 3: Eva
Grass-mania!
In this talk, we will talk about the grassmannians, both the finite and infinite dimensional ones. We will define their canonical vector bundles, which turn out to be universal in some sense, and give them a CW structure to compute their cohomology ring. As an application, we will prove the uniqueness of the Stiefel-Whitney classes defined in the last talk.
This talk is for the most part self contained, so it doesn't matter if you missed the previous one.
Th, Dec 10: Tommy
A line is one of the simplest geometric objects, but a whole bunch of them could provide us open problems!
I will talk about some past results on line arrangements, that are whole bunches of lines. I will speak a little bit on why line arrangements or plane arrangements stand out from other hypersurfaces in the study of topological singularity theory.
Spring 2014
We continue with Professor Alex Suciu's work.
Fall 2014
We follow Professor Alex Suciu's work this semester.
http://www.northeastern.edu/suciu/publications.html
But we will not meet at a regular basis.
Spring 2014
We meet on Tuesdays 3:30-4:25pm in room B211.
date | speaker | title |
---|---|---|
Feb. 25 (Tue) | Yongqiang Liu | Monodromy Decomposition I |
Mar. 4 (Tue) | Yongqiang Liu | Monodromy Decomposition II |
Mar. 25 (Tue) | KaiHo Wong | Conjecture of lower bounds of Alexander polynomial |
Apr. 8 (Tue) | Yongqiang Liu | Nearby Cycles and Alexander Modules |
Fall 2013
We are learning Hodge Theory this semester and will be following three books:
1. Voisin, Hodge Theory and Complex Algebraic Geometry I & II
2. Peters, Steenbrink, Mixed Hodge Structures
We meet weekly on Wednesdays from 12 at noon to 1pm in room 901.
date | speaker | title |
---|---|---|
Sep. 18 (Wed) | KaiHo Wong | Discussions on book material |
Sep. 25 (Wed) | Yongqiang Liu | Milnor Fibration at infinity of polynomial map |
Oct. 9 (Wed) | KaiHo Wong | Discussions on book material |
Oct. 16 (Wed) | Yongqiang Liu | Polynomial singularities |
Nov. 13 (Wed) | KaiHo Wong | Discussions on book material |
Spring 2013
date | speaker | title |
---|---|---|
Feb. 6 (Wed) | Jeff Poskin | Toric Varieties III |
Feb.13 (Wed) | Yongqiang Liu | Intersection Alexander Module |
Feb.20 (Wed) | Yun Su (Suky) | How do singularities change shape and view of objects? |
Feb.27 (Wed) | KaiHo Wong | Fundamental groups of plane curves complements |
Mar.20 (Wed) | Jörg Schürmann (University of Münster, Germany) | Characteristic classes of singular toric varieties |
Apr. 3 (Wed) | KaiHo Wong | Fundamental groups of plane curves complements II |
Apr.10 (Wed) | Yongqiang Liu | Milnor fiber of local function germ |
Apr.17 (Wed) 2:45pm-3:45pm (Note the different time) | KaiHo Wong | Formula of Alexander polynomials of plane curves |
Abstracts
Wed, 2/27: Tommy
Fundamental groups of plane curves complements
I will sketch the proof of the Zariski-Van Kampen thereon and say some general results about the fundamental groups of plane curves complements. In particular, we will investigate, under what conditions, these groups are abelian. Some simple examples will be provided. And if time permits, some classical examples of Zariski and Oka will be computed.
Fall 2012
date | speaker | title |
---|---|---|
Sept. 18 (Tue) | KaiHo Wong | Organization and Milnor fibration and Milnor Fiber |
Sept. 25 (Tue) | KaiHo Wong | Algebraic links and exotic spheres |
Oct. 4 (Thu) | Yun Su (Suky) | Alexander polynomial of complex algebraic curve (Note the different day but same time and location) |
Oct. 11 (Thu) | Yongqiang Liu | Sheaves and Hypercohomology |
Oct. 18 (Thu) | Jeff Poskin | Toric Varieties II |
Nov. 1 (Thu) | Yongqiang Liu | Mixed Hodge Structure |
Nov. 15 (Thu) | KaiHo Wong | Euler characteristics of hypersurfaces with isolated singularities |
Nov. 29 (Thu) | Markus Banagl, University of Heidelberg | High-Dimensional Topological Field Theory, Automata Theory, and Exotic spheres |
Abstracts
Thu, 10/4: Suky
Alexander polynomial of complex algebraic curve
I will extend the definition of Alexander polynomial in knot theory to an complex algebraic curve. From the definition, it is clear that Alexander polynomial is an topological invariant for curves. I will explain how the topology of a curve control its Alexander polynomial, in terms of the factors. Calculations of some examples will be provided.